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FINAL REPORT

MAGNETO-FLUID DYNAMICS CALCULATIONS FOR AERODYNAMICS

AFOSR GRANT FA9550-04-1-0155

Robert W. MacCormack
Department of Aeronautics and Astronautics

Stanford University

Abstract
Magneto-Hydro-Dynamics (MHD) or more generally Magneto-Fluid-Dynamics (MFD) offers a
potential breakthrough in both hypersonic vehicle design and propulsion. Reductions in heat
transfer and flow control using magnetic fields can be important for enabling a hypersonic
vehicle to pass more efficiently and safely through the atmosphere. Magnetic and electric fields
placed within the propulsion system may enable the extraction of electrical energy from the
ionized flow entering the engine, while simultaneously slowing the fluid, without losses in total
pressure caused by shockwaves, and enhancing complete fuel combustion. The extracted energy
can be returned back into the flow after combustion for further flow acceleration and engine
thrust. These potential benefits may or may not be realizable. Realistic aerodynamic simulations,
under the conditions of expected low electrical conductivities and strong magnetic fields, will be
required. The solution of the complete equations governing magneto-fluid dynamics, including
magnetic induction and diffusion within strong magnetic fields, are needed to perform the
required flow simulations. The MFD equations can introduce severe numerical simulation
difficulties. The goal of this research is to develop algorithms for their solution for weakly
ionized aerodynamic flows for both internal and external MFD flows.

The algorithms presented herein contain numerical procedures for solving the governing MFD
equations, applying boundary conditions, evaluating temperature and pressures for an open
ended set of fluid species composing the flow, and determining the electrical conductivity of the
ionized gas. Applications relevant to flows past flight vehicles and through scram jet engines are
presented.

I. Background

There are several descriptions of MFD flows, each with their own assumptions and set of
governing equations. The full set of MFD equations and a simplified set, called the "Low
Magnetic Reynolds Number Approximation equations, are presented below. The latter set is
prevalent today. This is because of its simplicity and belief that it sufficiently describes
aerodynamic flows within electromagnetic fields. However, an example is also presented
showing that this may not be true. The research of this contract was aimed toward the
development of algorithms for the full set of MFD equations.

The Equations of Magneto-Fluid Dynamics
OU WF aG aHT

1) The Navier-Stokes equations_- +- +-- +- = 0, with U = [p, pu, pv, pw,e]
at ax Dy Dz
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density p, velocities u, v and w, total energy per unit volume e.

2) Maxwell's equations- The Ampere-Maxwell equation - =1 ( xB

at Ce P,.

Faraday's equation at = - × Eat

with constraints V.IE= p and V./ =0,
Ee

with electric field E, magnetic field b, current density J, inductive capacity c,

magnetic permeability pe =4;rx 7 (ckgm and charge density '.(coulomb)

3) Generalized Ohm's law i = o-(E + ii x/h), with electrical conductivity a,.

4) MFD assumptions: charge neutral plasma, ,o' = 0, and time invariant k, or J - V × B.

Because of the MFD assumptions in (4), the above set of equations are not technically the "full"
set of MFD equations and we will respect this condition by placing an asterisk on the word
"full*" used herein. These assumptions essentially remove the Ampere-Maxwell equation from
the full set of MFD equations.

The Low Magnetic Reynolds Number Approximation
An ionized flow within an imposed magnetic field can self induce, thus changing the

magnitude of the total magnetic field. The relative magnitude of the induced component depends
upon the Magnetic Reynolds number, defined by R = uoloa>,, where uo and l are reference

Iflow speed. The magnetic diffusion coefficient is given by V- . For most aerodynamic
%L/e

flows the gas conductivity is very small and, consequently, V is very large and the magnetic
Reynolds number is less than one. In such cases, any self induced magnetic field supposedly
rapidly diffuses away, leaving only the imposed magnetic field. This leads to a great
simplification in calculating the electro-magnetic effects upon an ionized flow. This approach,
the low magnetic Reynolds approximation approach, removes the Faraday equation from the
MFD equation set and only needs to add a source term to the usual flow equations to include the
electro-magnetic field effects. This source term consists of the Lorentz force, L I= J x B, acting
on the momentum of the flow, Joule heating, caused by the flow of electric current through the
fluid, plus the magnetic force work terms affecting the energy of the plasma. The equations
become

0U aF aG aH I 7.au+a+ +a=S, with S 0,(jxB),(JxB)Y,(JxB),,-LJ.J+(JxB).d]

at ax ay az

Why the Need for the Full* Set of MFD Equations?
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C. Park, D.W. Bogdanoff and U.B. Mehta 1  2

presented a I-D analysis of the performance
of a scramjet propulsion system
incorporating the MFD energy bypass Y

concept'. The MFD accelerator section was combustor MFD accelerator

a square converging duct, 2.846m long, of
height/width 0.933m at the entrance and I 0 2
0.730m at the exit, part of which is sketched Figure 1 Sketch of MFD accelerator

in Fig. 1. It is located just down stream of the simulation

combustor section. Combustion was not

simulated numerically in this study.
The magnetic field across the channel was B0 = 11.28T and the transverse voltage gradient
varied from 30,990 V/m at the entrance to 31,470 V/m at the exit. At the entrance the pressure
was 1.25 xI106 N/M 2, temperature 35830 K, and the Mach number equaled 1.147. The electrical
conductivity was a, =35.87mho/m. This value was used in the Park, Bogdanoff and Mehta

study. The interaction parameter Q=ceBolo2/p.u=20 and Rm =0.17, based on accelerator
channel length. The velocity vectors within the combustor and accelerator sections are shown in
Figs.2 and 3. They both show acceleration in accord with the load factor set at 2.04. However, it
can also be seen that the velocities are larger in the combustor section for the low magnetic Re
number approach.

2 -2 -

1 1

I I I I I I I I
-1 0 1 X 2 -1 0 1 X 2

Figure 2 Velocity vectors, low magnetic Re approach Figure 3 Velocity vectors, full MFD approach

I I I

--------------- -------------------------- I I i
- - - - Id

2 2

081 0 @ 1-InlI I I I1 U ti

I- I -

-1 0 1 2 X -1 0 1 2 X

Figure 4 Thrust and velocity, low magnetic Re approach Figure 5 Thrust and velocity, full* MFD approximation

A disturbance that has propagated upstream against the Mach 1.147 flow can be observed in
Figs.3 and 5. This can only be a shock wave, which could cause serious engine unstart and was
missed by the low magnetic Reynolds number approach.
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II. Technical Progress
Numerical Procedures
The following six sections represent numerical procedures that have been devised or further
developed during the course of the present contact period. We start by presenting again, though
in greater detail, the Full* Set of MFD equations and the Low Magnetic Reynolds Number
equations. An additional description that avoids numerical precision difficulties in flow
simulations within strong magnetic and electric fields is also described.

(1) The Equations of Magneto-Fluid Dynamics

(i) The Full* Equations of Magneto-Fluid-Dynamics
The unsteady equations of compressible viscous flow within an imposed magnetic field become

aU aF aG aH =__+-+--+-=0

at ax Oy az
The state flux vector is given by

U :[p, pu,pv, pw, e*,B,By,B] T

with density p, velocities u, v and w, total energy per unit volume, including magnetic field

energy, e* =e+-I B2 , and Bx, By and B, are the components of the magnetic field.

e=p(c+ I(u +vI +w2)), c represents the internal energy and B 2 =B 2+B 2 +B 2 The flux
vector F becomes

Pu

pu2 + p* +,r. -- BxBx

pvU + -- BxB

pwu + r, - - B B

F= (e*+p*+r_)u+r,Yv+rxw-ka
T

ax

Byu - Bxv +I83,,B,u-B,,w+ ,6x,
. I O~~~Bj _ B,].Temgei il

with p =p + -B 2 and magnetic stress given by , The magnetic field
2,u,= -V ax, ax)

components shown above represent the total of the imposed and induced fields. The viscous
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U Ustress tensor is given by +-,, = -p + I. 5,A2uk , where 5, is the Kronecker delta. The
(axs ax) axk

other flux vectors G and H are similar. The eigenvalues are for the flux vector F are

,6 =I~ A3,1u B ±' = U Ifc +i-+ (c2'+-#'zc2-4 and
TP ~P ~P)

2B2 2 C2

27,8 = U ± c_ +,_ -j( C_ _ -_4

(ii) The Governing Equations Under the Low Magnetic Reynolds Number Approximation
An ionized flow within an imposed magnetic field can self induce, thus changing the

magnitude of the total magnetic field. The relative magnitude of the induced component depends
upon the Magnetic Reynolds number, defined by Rm = uoloue/ue, where u. and l0 are reference

flow speed and length, a,( is the gas electrical conductivity and, Pe= 4)r x 10- ' is the magnetic
1

permeability. The magnetic diffusion coefficient is given by v, - . For most aerodynamic

flows the gas conductivity is very small and, consequently, v is very large and the magnetic

Reynolds number is less than one. In such cases, any self induced magnetic field supposedly
rapidly diffuses away, leaving only the imposed magnetic field. This leads to a great
simplification in calculating the electro-magnetic effects upon an ionized flow. This approach,
The Low Magnetic Reynolds Approximation approach, only needs to add a source term to the
usual flow equations to include the electro-magnetic field effects.

Ionized flow in the presence of a magnetic or electric field generates a current, according to

Ohm's law, a , (k + u x B), where j is the current density, E is the electric field potential, u

is the flow velocity and B is the magnetic field. The electric current itself interacts with the

magnetic field to create a Lorentz force, Lf j x B, that acts on the flow in addition to pressure,

p, and viscous stress.

In addition to the Lorentz force added to the momentum equations, Joule heating, caused by
the flow of electric current through the fluid, plus magnetic force work terms need to be added to
the energy equation. The equations become

aU WF aG aH S-+-+--= S
at ax ay az

The state, flux vectors and the source vector are given by U = [p, pu, pv, pw, e]T
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PU 
0

p2 ++ (j×B)
'OU 2+ P+ X

F= pvu + z,y ,etc, and S= (j x B)y

pwu + r : (x B).

aT(e + p +,r,,)u+ rxyv+ T,w- k x ( )i

The eigenvalues for the flux vector F, under the low Magnetic Reynolds approximation, are

21,3,4 = u and 1, 5=u±c

This equation set is supposedly sufficient to describe ionized flow within an electro-magnetic
field, as long as the fields are specified. It is not much more difficult to solve than the underlying
Navier-Stokes flow equations themselves. However, if the magnetic field varies in time by self
induction and the induced magnetic components are relatively significant in magnitude then the
equations for magnetic induction also need to be solved. This larger set, shown earlier, is much
more difficult to solve and should not be attempted if it can be avoided. However, as shown in
the Background section above, this simpler set of equations may not suffice even for
aerodynamic flows.

(iii) An Alternative Formulation of the Equations of Magneto-fluid-Dynamics -
The Reduced MFD Equations
An alternate formulation of the governing equations of magneto-fluid-dynamics has been

devised. This formulation is mathematically equivalent to the original set of equations governing
magneto-fluid-dynamics, given above in Sec.(i), including magnetic self induction, and retains
the conservation law form of the equations and their eigenvalues. This new set has advantages
over the original set when solved numerically for flows within strong imposed magnetic fields.

This formulation treats the imposed and induced fields separately. Though ever present, the
imposed field remains in the background as the finite volume difference equations focus on the
induced field. The imposed field can not be eliminated entirely from the difference equations
because of non-linearity, but no squared terms of the imposed magnetic field appear. This is
important for flows within strong imposed magnetic fields, because the magnetic pressure,
proportional to the square of the imposed magnetic field strength, can be several orders of
magnitude larger than the aerodynamic pressure or the induced magnetic field pressure.
Numerical errors in the very large magnetic stress difference terms of the imposed field could be
of significance when combined with the relatively smaller fluid stress terms.

Before the introduction of this alternative formulation, there were two choices for including
the effects of a magnetic field upon an ionized flow: (1) the complete equations of magneto-
fluid-dynamics, including magnetic induction and diffusion and (2) the inclusion of the "j cross
B" force and Joule heating effects in the Navier-Stokes equations as additional source terms. The
first choice is a set of eight equations consisting of the Navier-Stokes equations, with added
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magnetic stress tensor, plus the Maxwell inductions equations and is presented in Sec.(i) above.
The second choice, a set of five equations, called the "Low Magnetic Reynolds Number
Approximation", assumes that the induced magnetic field is negligible. It is far more efficient
and has far fewer numerical difficulties associated with inclusion of magnetic effects than the
first choice. There is, however, some uncertainty in when the Low Magnetic Reynolds number is
valid, even for aerodynamic flows of current interest. The now available third choice presented
below is a consistent alternative to the first choice.

The total magnetic field consists of the imposed magnetic field B0 and the induced magnetic

field B. B = B0 + B, where the subscripts t, 0 and i now and below indicate total, imposed and
induced magnetic components. For cases for which the induced field is much less than the
imposed field, but not negligibly small, we can benefit by rewriting the Lorentz force as

z ,= I - -
-(V x B,) x B,, because the imposed magnetic field is generated by currents external toP ,

the flow field, for which V x Bo = 0. The approach taken here is similar to the simplification in
electromagnetic scattering where only the disturbed field is calculated, with nothing lost by the
separation of the two fields.

We can also write the Lorentz force as Zf,= -(V x B,)x Bi,-I( xB0)x B, and through
P, U,

some algebraic manipulation, the Lorentz force can be brought into the flux derivative terms of
the momentum equation, in conservation law form as before. The state vector becomes

U = I pu, pv, pw, e', B, , , B,y, Biz I and the new flux vector F becomes

Pu

,ou 2 
" p*+ rxx BiB,,vv- ±{B,xBox}

Ovu + TX , Bix - J- B,,BoYJ
pwu+ ,. -- LB,zB, -

F= (e*+p*+rz)u+r,yv+r,.w-ka
T

Pxax+---A ii) Bx + 8 Bx +,B/3,Bi,, +,8fiB tz)

B,Yu - B,xv + i,,y

B,u - B,w + fi,8

with p = p + B,2 + -B1 B, and the magnetic stress given by A/ = -v j
By replacing the magnetic pressure -- B, by the smaller IB 2 B, , the magnetic and20,2B, /,/, hemgei n

static pressures are closer in magnitude for strong imposed magnetic fields. Favorable reductions
also take place in the induction equations because the magnetic diffusion terms /3,, are just

7



components of the curl of the induced magnetic field times v,. Again the imposed field,

produced by currents outside the flow field, is curl free. Hence, v Vx B, = veVx Bi. Here also

the production and diffusion terms are more equally balanced. Finally, the terms in the curly
brackets in the momentum equations above vanish if the imposed field is constant in space
because of the divergence free nature of both the imposed and induced fields.

One may assume that the structural changes to the equations, just presented, from the
separation of the induced and imposed fields, would have profound changes to the original
eigenvalue-eigenvector structure of the equations. Fortunately, the eigenvalues remain the same
as shown below.

BX2 B2 2

2, B, 2 B, c2 B1

A,6 =u,/ A,4  = U --T" , u2, -- '/- c -F-- --- C2 + -- -- and

37,8 =u ±_ c + -- -c2+ -4c2-

The eigenvectors are changed, however, but the original set can still be used in the solution
procedure as is to solve the alternative RMFD (Reduced Magneto-Fluid Dynamics) equations
just presented, because of the conservation form of the flux vector splitting used.

The term Reduced is used here to reflect the notion that the magnitude of the magnetic terms
is reduced by removing as often as possible the imposed magnetic field from them, although the
number of terms is actually increased. The RMFD equations are mathematically and physically
equivalent to the original MFD equations.

(2) Boundary Conditions
(i) At Solid Walls
The usual "no slip" type boundary conditions are used for the Navier-Stokes terms of the
governing equations. The boundary conditions for the magnetic terms appearing in the fluid flow
equations, i.e., the fluid momentum equations containing the Lorentz force terms and the energy
equation containing the Joule heating and magnetic force work terms, are as follows.

a) The imposed magnetic field is specified everywhere.
b) The normal component of the induced magnetic field is fixed to zero (see note below).

c) The tangential components of the induced magnetic field are chosen so that V x B, 0.
d)

For the induction equation, aB X'k = -V _ X x +R×! x , j is specified at the wall.

at H 11
Note that for perfectly conducting walls (o- = oo) and the "no slip" boundary condition implying

that ii = 0, the tangential components of k must vanish, otherwise the current J z a, E would

8



be infinite. This implies that the normal component of aB must vanish, proving assertion (b)c9t

above.

(ii) At Symmetry Planes, Entrance, Exit and Far Field Boundaries
At planes of flow symmetry reflection boundary conditions are applied. At flow through
boundaries the eigenvalues of the equations should be used to determine the dependence of the
boundary on the interior of the flow. The equations of MFD have characteristic speeds that differ
greatly from the wave speeds of the conventional equations for compressible flow. Boundaries
that appear to be supersonic may be actually subsonic boundaries because of fast magnetic
waves. This is a significant concern for using the "Low Magnetic Reynolds Number
Approximation" approach, which is blind to this boundary condition dependence issue.

(3) Electrical Conductivity and Ohm's law
Most previous numerical studies for solving the MFD equations used a scalar electrical
conductivity. However, a scalar electrical conductivity can not simulate the effects of Hall
currents and ion slip. A tensor form for the electrical conductivity of the gas is required and is
described below.
(i) Scalar Conductivity

The current density J can be defined by Ohm's law, using a scalar electrical conductivity ar, as

follows

J = a (E + ii x B)

The conductivity depends upon the number and mobility of the charged particles, both electrons
and ions, present. For air it is usually very small and consequently the magnetic and electric

fields required for aerodynamic interaction need to be very large. If we define E' / + ii x ,

then current density can be written as J = e '. Thus J is in the same direction as E'. This is

not strictly true because particle collisions also can cause the charged particle to drift off this

course, the k'x B drift, within a plane normal to /B, which causes the Hall current and ion slip
effects and requires the electrical conductivity to be represented as a tensor.

(ii) Tensor Conductivity (following along the discussion in Mitchner and Kruger, Partially
Ionized Gases2)

Consider a local coordinate system (i, ,2), where 2 is in the direction of B, is in the

direction of k' in the plane - to fi and i is I to both 5' and .. Then h=Bl, and

generalized currents in the i-5 are denoted as J, =o-EY and J. -HEJ , and in the

i direction by J. = c,,E,. Consider a second coordinate system (x',y',z'), which represents a

coordinate rotation about the i axis through a angle 0. Then

J= cos OJ, + sin OJ,

J,=-sin OJ, +cosOJ,

Or

9



J. =-Ou cos 0E. +o . sin 0E =-crHEy + UE,'
Jy. o-lsinOE+ o±cosOE,= C-HE. +a-EY

Or, by defining the electrical conductivity tensor Y, the current density J , via Ohm's law, can
be written as

JY, cr , 0 E'Y,
J", 0 0 EZ ,

The first coordinate system, (k,5,2) is aligned with the local magnetic and electric field
directions. The second (x', y', z') generalizes the direction within the 5 - i plane. We now need

to relate these to the computational coordinate system (x,y,z). We define again the (i, 5,2)
B -,E,coordinate directions as follows z =/ b= - E1, = (E" b)b, !' = E'- F =

x =y x = d. Then, using the orthogonal unit vectors b, j and d defined in the (x,y,z)

coordinate system, b =(bx,by, b j) = (e,ey,ez) and d =(dx,d,d.

Or

= e e e, e /y / and y]= e, by//i
Xl by bzJLzJ dze b,JL-i

T T-1
Similarly,

x' cos0 sin0 inO
y'=-sinO cost 0 and = sin cos0 0/y'
zI 0 0 1 [ 0 0 ZJLzJ

S S-I

Starting with the current density defined above J Y F', written in the (x', y', z') coordinate

system, we can express J in the computational coordinate system (x,y,z), using the
transformations S and T, as follows.

T-[S-1 J = T- 1S-'S TT- 1S-1 EyE,

Or
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a I

[Jr E [E, + (ii x B), 1
Jy T-'S-'ST E -R L EY+(ii h)y

E E, +(ii xB),, FJr 1r- CH__0

Jj[ -~+(xvjT iCis + + C

E +(iB) R J Z
0 0 "+

and R is the resistivity matrix. Using the MFD assumption, J = -V x B, we can express the

electric field as

X jB + R V x'

The equation for magnetic induction is then

-fi=-v×Xk=-V× -i×h+ R ×V
a t P ,e

1
For the scalar electrical conductivity R = -, otherwise R = T-'S-'Y-'S T. The conductivities

"e

used within the tensor E-' are defined by

- +s - ____Cr-, I+S c,-< and cl= cre  (1)CT± (l+s)2 +/3C -
H (l+s)2 +iCe an T 1=T I

S y2 'H+ 2 "yl

with
s = ,8,,8, the ion slip factor for a weakly ionized gas,

_ the Hall Parameter for electrons,

= the Hall Parameter for single charged heavy ions.
Vi

The cyclotron (or Larmor) frequency for the electrons, in terms of the magnetic field strength,

electron charge and mass, is given by co, = lq"B , the corresponding frequency for the ions is
me

W , the average momentum transfer collision frequency for electron is ve and that for
mi

ions is v,. For the present flow simulations 8,e = 0.5 and / = 0.05
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(4) Equilibrium Chemistry Model and Evaluation of c-e
Electrons and ions are created by collisions between the atoms and molecules composing the gas,
in our case air and any element introduced into the flow via seeding. The collisions become more
violent with increasing temperature. Thus, ionization depends upon the chemical mixture of the
gas and temperature. The air chemistry model, with cesium seeding, consisted of 13 species and
11 reactions. The species consisted of

N2, 02, NO, N, 0, Cs, e-, N,, 0, NO', N', 0' and Cs'

The reactions 11 considered are

N2 +M <-+ 2N + M Cs+e- <-*-Cs+ +e-+e -

02+ M<->20+M N+e- <->N++e-+e -

NO+ M +- N +O+ M O+e- <->O++e-+e -

N2+0 <->NO+N N+N <->N2+e

NO+O +->N+O 2  0+0 *->02 +e-

N+O <->NO++e -

For the cases to be presented cesium seeding was not used. The gas will be assumed to be in
chemical equilibrium. Equilibrium coefficients, functions of temperature and particle number
densities which determine specie concentrations, were taken from Park's, Nonequilibrium
Hypersonic Aerothermodynamics3 . The local mass fractions were then used as inputs to Park's
program "trnpt" 4 for calculating transport coefficients, including a,-.

Equilibrium Calculation
The set of species considered above is an open set in that a new species can be added at will.
This is different than the usual fixed set of species with temperature and pressure determined
from a set of curve fits for the given fixed set of species. However, temperature and pressure
must be calculated instead from chemical and thermal equilibrium relations, which is more time
consuming. Considerable effort has been made to compute equilibrium conditions efficiently.
The flow solver for the governing MFD equations solves the conservation laws for mass,
momentum and energy. This determines the fluid density and internal energy at each point of the
computational mesh. Temperature and pressure are then determined from the fluid density and
internal energy at each point by solving a set of equilibrium relations. The species are ordered by

{32, N+ 0e ,Cs, Cs ,N ,0~
is,}I= I202,NO, NO,Nz+,O,N,O,e-,C,s,+,O0I

The procedure for calculating pressure p and temperature T, given density p and internal
energy e, at each grid point is as follows.

,k = C'=p0/p , ns hr si h

1) The set of concentrations is initialized, c i c, p0 /p, i 1...,ns, where ns is the

number of species, p, and c° are the initial density and concentration of species i and

the superscript k indicates the newest value. These initial values correspond to those for

12



a given reference temperature. For example, for a reference temperature 3000 K with no
cesium seeding,

C0.763,c=0.237, 0 =0

The reference temperature of 300'K was chosen in the present calculations. A better choice
would be the values for ci from the previous time step, but this would require significant

storage memory, which is avoided at present.

2) The temperature T is initialized by the previous temperature from the last time step at the
given grid point and is given by Tk = To .

3) The set of concentrations {c,'} consistent with temperature Tk is found by solving a set of

equilibrium relations. The number of kg-moles of species i per unit volume is
X=, / M,, where M, is the molecular weight in kg of species i. The chemical

reactions listed above are of two types
I. Dissociation: molecule AB breaks apart to form species A and B, AB <-+ A + B

The chemical reaction relation is kX <-> k'ZAZB, where k' and k, are the forward

and backward reaction rates for chemical reaction AB <-> A+ B. In equilibrium this

relation becomes kfZA = kbxAZB or Ke'qAB = ZAXB, where K' = kl The forwardq k b

and backward reaction rates were obtained from tabulated values in Park3 . They
depend upon both particle number density and temperature.

II. Exchange reaction: species A and B form species C and D, A + B *-* C + D.

Similarly, the equilibrium relation for this reaction is K'eqXAXB = XCXD

Qnly quadratic equations need to be solved for each reaction equation to bring the
concentrations into equilibrium. Consider that an additional x kg-moles/m 3 need to react
to bring about equilibrium. For a type I chemical reaction the equation is
K'(,-(ZA, - x) =(ZA + x)(X, + x), and for type I K" (X A - x)(X, - x) = (Xc + x)(X,, + x).

Positive x indicates that the reaction is "forward". Checks need to be made so that the
species concentrations remain non-zero. For type I reactions x needs to bounded by
-min(A, XB): x5X AB If A=B then also -ZA < x. For type II reactions

-min(Z(., ) < x ___min(zA,Z B) • But if A = B, then also x , < XA and if C = D, then

also - < x. If x lies outside bound limits it is reset to the nearest limit.

4) The checking of the kg-mole/m 3 change x for each reaction in the above step is still not
sufficient to avoid negative concentrations. Each reaction was checked independently of
the others and when combined may still lead to negative concentrations. A global
checking needs to be made. For example species N2 appears in the first and fourth

reactions in column one of the listing above. If x(l) and x ) indicate changes calculated
for each reaction, then the kg-mole/m 3 change to N2 needs to be bounded by

x(1) + x(4) = XN2 <- vN, . To insure that all the concentrations remain non-negative we first
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set r = 1, j=1,-..,nr, where nr is the number of reactions (i.e., nr = l1 for the above

set of chemical reactions) and denote x),j = 1.nr as the set of kg-mole/M3 changes
for the set of chemical reactions. Some of the reactions need to be limited to avoid
negative concentrations from occurring. Each species needs to be checked in turn. For
example, for the first species, if x) + X

(4 ) 
= XN2 > N2, then the reactions involving N,

X ( 1) 
+ X

( 4 )  
( 1 ) 

+ X(4)

are limited, as follows. r <- min(rl, ) and r4 <- min(r, ). Similarly,
ZN, ZN,

for the second species 02, which appears in reactions (2) and (5), if

x(2) _ x(5) = xo0 > Xo. (notice the minus sign appearing before x , which results from its

presence on the "backward" side of the reaction equation), then r2 <- min(r 2, x)

X(2) _ (5)

and r <- min(r, ), etc. After checking each species in turn the set of kg-
xo

mole/m3 changes is reset x¢ <- rjx ¢ ), j = 1,., nr and each species is adjusted toward

equilibrium, for example, ZN-, +-ZN -- X(4) and Zo, <- Z, - x 
(

) + x(5), etc. The

new concentrations become ct+ 1 <-- aM, X' + (lICt)ck , i=l,-..,ns, where a is a
P

relaxation parameter, currently taken to be 2.

5) The new concentrations will distribute the internal energy differently and the
n, Rg

thermodynamic properties of the gas need to be recalculated, as follows. R--yc, g

where R and Rg are the specific and universal gas constants and the superscript k on

the concentrations has been surpressed; c, = r M , + rc, +c,. where

trans ) alj
c, is the specific heat at constant volume, nds is the number of diatomic species ( the

first nds species in the ordered list). The specific heat of the gas contains contributions
from translational, rotational, vibrational and electronic state internal energy and c,i and

c, are functions of temperature Tk. The total internal energy, with concentration set

n,

{c, } at temperature Tk, equals e' = cTk + Jc,hf , where hf ° is the heat of formation

of species i relative to the reference temperature 300 0K. If the set of concentrations and
temperature Tk are such that ek = e, then we have consistency and we may proceed to
the next step (6). If they do not match beyond a reasonable tolerance, we then need to
choose a different value for Tk, return to step (3) and iterate until convergence, ek --> e.
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A choice for the new estimate of the temperature is
ns

k dXI c, hf,'
71k <-T k +sign[mine e ,10000 K ,ek -e , where chj I dTk

6) The new temperature becomes the Tk for which ek --> e sufficiently. Thus T = T' and
the pressure becomes p = pRT.

(5) Divergence Control of the Induced Magnetic Field
An important constraint on the magnetic field is that it be divergence free, V. B= 0. During

the course of the calculation, error the in numerical solution of the magnetic induction equations,
containing both production terms and strong diffusion terms, can cause the magnetic field to drift
away from being divergence free. If uncorrected, this can quickly escalate the error in the
simulation. There are a few options for controlling this error: (1) a convection term can be
retained in the governing equations, proportional to V. B, to carry error out of the flow field, (2)
a poisson equation can be setup whose solution can be used to drive the divergence error back
toward zero, and (3) the divergence error can be placed in a dissipation equation to attenuate it
toward zero. The choice of which procedure to use is very case dependent. Procedure (1) is fairly
popular, but causes the governing equations to lose the "conservation law" form. Previously, the
present effort used procedure (2) for internal flows with good success. Procedure (3), perhaps
better suited for the unbounded external flow, is believed to be a new algorithm improvement
and will be presented here. Consider the following three equations in "conservation law" form.

aB aV.-B aBy aV.-B a B, aV.-B
- - and - (2)at ax at ay at az

If V. B 0 everywhere, the above equations will not change the magnetic field. On the other
hand, if V. B # 0, the equations will change the magnetic field, but the new field will also have a
changed divergence governed by

- y2 + (3)

This equation represents the dissipation equation for the divergence of the magnetic field. The
boundary conditions for the above equations are that V. B = 0 along all boundaries. The error
introduced within the flow field during a flow simulation probably has both positive and negative
values for V.B, occurring in equal measure. The dissipation equation together with the
boundary conditions should drive the error toward zero. However, the procedure is numerical
and consideration of how the derivative terms above are represented by finite differences is
important. Using the notation for backward, forward and central difference operators as follows,
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B & -B& D. B -B
D_ B i,j,k - i-l,j,k D,. i+l,j,k i,j,k and 0D B , B +,.,Jk ,-Bt.k

Ax i,XIk x,-Xi_ AX ,k xt+ I - x, Ax ij.k x,+ - x,

etc., where the "dots" appearing in the operator notation imply that the operator applies to all
factors to the right. The equations above are differenced as follows. First the divergence of the
magnetic field is approximated by

V .B, j,k D+'B +D+"B +D+B
Ax ,jk Ay BY j,k Az BZj,k

Equations (2) are then approximated by, where the superscript index n indicates the time step,

B - ' -B; B"+ 1 
- B"V" -"' B Bn and

At Ax J,k' At Ay J,k

Bn+l -Bn
B2~ -BZ

,j,k i,j,k -D • ,D _ V... _ - .B n,j,k

At Az

Equation (3), though not solved, predicts that the solution to the above difference equations will
result in

• ,, f.jj.k + D. •j,k + D },
AyAy AzAz

which indicates that the new divergence of the magnetic field equals the previous value modified
by dissipation.

For the present simulations, Eqs.(2) were solved in a general curvilinear axisymmetric
coordinate system. To preserve axisymmetry, central difference operators were used to
approximate derivatives in the z direction.

(6) The Numerical Method
OUOF OG OH

The governing equation - + - + - + - = 0, shown above, contains both inviscid terms
at ax &y az

and viscous terms. All terms and the boundary conditions are treated implicitly. The inviscid
terms, essentially the Euler equations extended to the ideal equations of MFD, use a modified
Steger-Warming flux splitting procedure. Assuming, for the moment two dimensional flow and
that the flux vectors shown below contain only the inviscid terms, we can write

OF aG
F=AU and G=BU, where A=- and B=-

au au
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We can turn these inside out as follows, assuming also for the moment that the inverses exist,
(i.e., the eigenvalues of A and B do not vanish).

U = A-'F and U = B-'G, where A- = S-'CA' A-'CAS and B- ' = S-'Cj'A'CS

Therefore, we can split the fluxes F and G directly as follows

F S =S-1C-A AA'C S F = S-'CA'D, CAS F = 21,F

A A± AA A

and

G± = S-'CB'A ,ABCBS G = S-'C'DB, CBS G = R±G

where the diagonal matrices DA, and DB± have "ones" or "zeros" as elements. For example, DA,

has "ones" where AA, has non-zero elements and DA I - . This approach has the benefit of

partitioning the conservative flux vectors themselves, which, for example, unlike the state
vectors, are often continuous across discontinuities in the flow. In terms of the generic flux
vectors

n fn n n n n n

i/ +" F". + A" F" and G, = J, + I=S,G, G,

Higher order accurate approximations for the fluxes can be made by upwind extrapolation or
interpolation of the flow variables to the flux surfaces. i.e.,

Fn Sn +n n

i+12,j =+ F " F" , etc.
i+i,j R i+l,j

The method used herein was third order accurate in space and, because the flows converged in
time to a steady state, only first order accurate in time. The method is also TVD (Total Variation
Diminishing) to be discussed below. Also, the full set of Navier-Stokes viscous terms, plus the
magnetic dispersion terms, VeV x B, of the Faraday equation, were included using second order

accurate central difference approximations.

TVD (Total Variation Diminishing) Method Extension
We present the extension to TVD of the Modified Steger-Warming Method. This extension is
more than cosmetic. It is designed to prevent spurious oscillation in the solution that can cause
severe numerical difficulties. We illustrate the procedure by applying it to the Euler equations in
conservative form in one spatial dimension, as follows. The Euler equations are

aU aF P P

- +- = 0, whereU= pu and F= PU2 +Pat ax ',(+p)

A generic algorithm for solving these equations is
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U,n+ = n _At jFn

AX 1, ~F+ 1/2  Fi-1121

The Roe and Modified Steger Warming methods for evaluating the flux vector are shown below.
They are both first order methods at present.

F (R.,) F,+F,+, -U)

I
Where we define A =A -A, A =S-'A and

Z , = - ,- AAA AS = S - C A

The "hats" and "bars" indicate that matrices use, respectively, either "Roe" averaged data or
arithmetic averaged data. Note that after some algebraic manipulation the Modified Steger
Warming method above can be written in a similar form as the Roe method

F(S-W) - + F+g
,+M2 2 ,+1/2 ,+1

F(ms-w) 1 1-R
+1/2 2 j+/ ,+ +/ (FI+I 1)

2 2)F,i+l/ F+I-I(g+~' (F;9+F;

,("s-w) = (g+1+1/2 + g-t+2 j '~+1/2 i 1~i2 ) (FI+I -

I +1/2

or

F(m-s-w)_ F ++| 2-,j,p (F,+, -F)+1/2 2 2 i12

The TVD expression for the second order accurate flux approximation using the Modified
Steger-Warming method is

+l/2 " -- '+/2 {Fi" +11 (I- A+ 1 / 2 Ax)(F" -F;-)} + -i+1/2 {Fi+, - (+ A-,/ 2 x) +(F+2  +

The matrix ± can be diagonalized as follows ± = S-C'D±C S . Therefore we can write flux

vector as
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-,, -- l -, -_, - - ( - A t ) ,
+ ,/2 2F,++12 AJ112,+-112 AJ11211,+I/22 - ++/2 -A

1 1 - - At F

2 A, +J/2 -,i++ D +/2 1A.+ 1/2 1+/2 2 A-,12 - + 2- F ,)

or

= g ~ F~ ~ F + ~' -'1' I CA,,+112S,T+1 12(Fil Fn,F+/
2 -++112Fn + 1-F ,+I/2 A.'1/2 Ax)1

1 7 1 5 1 At- 'F-F)
- 2 Il+1/2,+1/2D, -),+,/2 I -A_+12 4C A,+I12S+ (F il2 ill[

Let the eigenvalues of A be ordered as W, = 2, = W + U and A3 = W -U, then

O'± d 0 0 1 ± sgn()) 0 1

We define the the vector Gk for k=i-l,i,i+landi+2 toi=k+1,by

[~gi

Gk= g 2 ~ =CAi+112Si+Ii2 F

g 3 k

Then

-+-2 +I2 1 O++l/2 JA J2112 Gi + +,i1+ 1 /22, +2Ax) (OG -a,

2 ' -( Ax )FY++//2,-I+-/S + /zCA,-G+l/2

We now apply the flux limiter to define the TVD flux for the Modified Steger-Warming method.

d+,lg1  + +- g . l -i 1- Ai,+i/, --'J ( d+ivP+ (gli - g,,-) -d-,q (g, ,+j - g,)
1 -At

F,2,, =S,, 2C2- - d+,Ig 2,, +d,gI, + 2 1 - .,+112 I (d+2 1+(gz,-g 2I,-)-d 2q'(g 2 ,,-g 2 ,))

d ,  +d, + 1- I ,+l/2 At (d+,2V+ (g3 ,, -9,,) -' + (g3 ,,+ ,- ,

where

ql+ (g,, - g,,-,) = min mod (g,,, - g1,,_, g,,,+ - g,,)
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An example of a program for calculating the flux F712 at all interior surfaces, from i = I + 1/ 2 to

i I- 1/ 2, using temporary variables h, ,for 1 =1, 2 and 3, and vectors Gk , with elements 90 1

for k =1, 2,3 and 4 and I=l1, 2and 3, etc, follows.

1) Begin for i = 1,-- , I - I do the following

2) Calculate G, C= Sl-1/2i+ 12FPn'_ where P = max(2, i)

3) Calculate G2 = CA 19+1/2 ';'

4) Calculate G3 = CA+/ 9i'112 +17

5) Calculate G4 =CA+/ gi+1/ 2 F +2, where i"=min(I-2i

6) Calculate, for 1 = 1, 2 and 3,

if sgn(A/,, 112) =1 then h, = g2,l+ I- 2, 1J+114 ji odg,g,g 3  2

else h, = g,,4 -I ( I, +11 I4t9)min mod(g,,, 9g2 ,1 ,, -g93 j)

7) Calculate 12",/2 = i+1112CAil112 [2
8) End if i = I -1I

The figure below shows the results for the Modified Steger-Warming method with TVD for flow
within a shock tube.

2

P/I0
1.5

05
.0 0.5 1 1.5 X 2

Figure 6 Density comparison for the Modified Steger-Warming method, with TVD, for a
moving shock wave, contact discontinuity and rarefaction, (CFL=0.9, 40 time steps)

20



III. Applications

(1) External Flow: Simulation of the Ziemer Experiment

In 1959 R.W. Ziemer5 reported results from /
an experimental investigation in magneto-
aerodynamics. He placed a hemi-spherically \i
nosed cylinder, of diameter 0.02m and made
of Pyrex glass, within an electromagnetic i,

shock tube producing a hypervelocity flow \
of ionized air. He observed that with the
magnetic field turned on the shock wave
standoff distance increased by a factor of 7.5
fo r a magnetic interaction parameter z / ' ;qf

SB 2r / u= 69 .The assumed free .

stream conditions are / / \

velocity 5690 m/s
pressure 3033 N/m2  ,
temperature 9813 'K Figure 7 Pressure contours within magnetic

density 5.847x10-2kg/m field Bo=2T

A discharge of electric current was used first to ionize the air at one end of a 3 inch diameter
Pyrex glass pipe and was then followed by a further large capacitor discharge through the
ionized gas. The large joule heating of the gas, plus the self pinching of the gas by the large
magnetic field created by the current flow, produced a strong shock wave that traveled down the
glass pipe toward the test section. A high speed camera was used to record the passage of the
shock front past the model and during the establishment of steady equilibrium gas flow. A bow
shock wave formed, dividing the shock layer about the model from free stream ahead. A dipole-
like magnetic field was created by a current pulse through the copper coil located within the
model, which interacted with the surrounding ionized flow.

The magnetic interaction parameter is defined by Q olB B ,rbdy',PU. where al is the

electrical conductivity of the gas within the shock layer, B, is the strength of the dipole at the

stagnation point, r,, is the body radius, p. is the free stream density and u. is the free stream

velocity. The shock wave standoff distance was observed to increase by a factor of 7.5 with
Q =69 over that with B0 = 0.

Bush Analysis
Bush6 cleverly simplified the set of governing equations into an ordinary differential equation

and found a similarity solution. He modeled the low subsonic flow in the stagnation region of
the shock layer as incompressible, assumed a spherical shock wave shape, initialized the solution
at the shock and marched it toward the body. He also assumed that the electrical conductivity
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was constant within the shock layer and zero outside of it. His analytical results supported
Ziemer's experimental observations and predicted a reduction in heat transfer through magnetic
field interaction.

Poggie and Gaitonde Computation
Poggie and Gaitonde 7 used the theoretical analysis of Bush for validating their computer

program developed for solving the equations of magneto-fluid dynamics using the low magnetic
Reynolds number approach. This approach fixes the magnetic field to that imposed. The
magnetic field interacts with the flow through Lorentz forces and joule heating, modeled through
source terms added to the Navier-Stokes equations. Their simulations, using perfect gas
relations, agreed well with Bush's theory, thus providing validation for their numerical
procedures.

Present Study
The purpose of the present study is the development of numerical procedures to simulate

the interaction of strong magnetic and electric fields with weakly ionized aerodynamic flows.
The current within the fluid can induce an additional magnetic field, which is governed by the set
of Maxwell equations. The complete Navier-Stokes equations, with magnetic stress and energy
terms included, plus Maxwell's equations are solved together, subject to the usual MFD
assumptions of charge neutrality and that the current density is proportional to the curl of the
magnetic field. This set will be called the full equations of magneto-fluid dynamics (MFD)
herein, although a larger set without the MHD approximations is more accurately termed the full
set. Ziemer's experiment is used herein as a difficult challenge for algorithm development and
flow simulation. Although the simulation to be presented is expected to be closer to reality than
those of Bush and Poggie and Gaitonde, it is still limited as will be explained below.

The full set of MFD equations, Ohm's for conducting gases, and the equilibrium chemistry
model were used in the following simulations. A blast wave moved at Mach 21.5 into stationary
air, at temperature 2730 K and pressure 9.33N/m 2, past the model. The free stream Mach number
for the flow behind the blast wave, relative to the model, was of 2.0. The free stream conditions
are given in the table below. Although an attempt was made to match the experimental
conditions of Ziemer, no precise match for the magnetic interaction parameter Q could be made
because of the large variation in electrical conductivity behind the shock. There was no clear
choice in which value to use. The imposed magnetic field at the stagnation point was Bo=0, 1 or
2 Tesla. The temperature behind the shock wave near the nose was about 23,000 'K and
pressures were as high as 2x10 4 N/M2. At these conditions the flow was almost completely
dissociated. The chemistry model, shown above, should also have included doubly ionized
molecules and atoms, which limits to some degree the realism of the present simulation. The
present chemistry model should be sufficient for temperatures less than 15,000 'K, which would
cover the main region of current hypersonic flow interest. Because the main purpose of the
present simulation is to challenge the algorithm in development and because the extension to
doubly ionized atoms and molecules is very challenging in itself, the chemistry model has not at
present been further extended. An isothermal wall boundary condition was assumed with the
wall temperature at 2730K.
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The equation for the magnetic dipole is
3 r3

given by B = os 0r Msr
3 o -0 s-o

r0 0 30 2r 0.0 0.04 0.0

where r is measured from the origin, 0 is
measured from the negative x-axis direction,

B0 the dipole strength and rbdy is the body

radius. The dipole should fall off in strength-02
away from the body along the axis of
symmetry asB=B ',y/). However,

asB= O rbdy / r )  -004nn1
-0.04 -002 0 0.02 0.04 0.06

Ziemer measured a faster fall off rate of X

B = B. (r,,, / r)'. in his experiment. Figure 8 Dipole magnetic field lines

Standoff Distance
The pressure contours for flow about the model are shown below in Figs.9-1 1, with the results
for the full set of MFD equations at the top half of each figure and those for the low magnetic
Reynolds number approach below. The standoff distance of the bow shock wave from the model
is compared for each approach versus magnetic dipole strength in Fig. 12, with the dashed curve
indicating the low magnetic Reynolds number approach.

0.04 0.04 -

Level P Level P
0.02 10 18278.4 0.02 10 21648.5

9 16711.9 9 197477
15145.3 81747

7 13578.8 7 15946.2
6 12012.3 6 140454

) " 0 5 10445.8 ) " 0 5 121446
4 8879.25 4 10243.8
3 7312.73 3 8343.04

254822 44.26
1 f4179,66 

1 4541.47
-0.02 -0.02

-0.04 I .. . I . I -0.04 . ,
-0.04 -0.02 0 0.02 0.04 0.06 -0.04 -0.02 0 0.02 0.04 0.06

x x
Figure 9 Pressure contours, B,=O Figure 10 Pressure contours, Bo=l

Assuming that the numerical simulations are realistic, it is clear from the above figures that
the two approaches yield slightly different standoff distances and pressure contour results, as
seen in Figs. 10 and 11. To explain this difference we can observe the imposed and induced
magnetic fields shown below in Figs.13-16. The maximum induced magnetic field is less than
5% of the imposed magnetic field dipole strength and it falls off at a slower rate with distance
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